Section 1.4: Building Functions from Functions

Ex 1) Find $(f \circ g)(3)$ and $(g \circ f)(-2)$ when

$$f(x) = x^{2} + 4 \text{ and } g(x) = \sqrt{x+1}$$

$$(f \circ g) (3) = f(\underline{g(3)})$$

$$\int_{\sqrt{3}+1} So(f \cdot g)(3) = \emptyset$$

$$f(2) = (2)^{2} + 4 = \emptyset$$

$$(g \circ f) (-2) = g(\underline{f(-2)})$$

$$(-2)^{2} + 4 = \emptyset$$

$$= \sqrt{9}$$

$$(-2)^{2} + 4 = \emptyset$$

$$= \sqrt{9}$$

Ex 2) Find $(f \circ g)(x)$ and $(g \circ f)(x)$. State the

domain of each

$$f(x) = x^{2} - 2 \text{ and } g(x) = \sqrt{x+1}$$

$$f(g(x)) \longrightarrow f(\sqrt{x+1}) = (\sqrt{x+1})^{2} - 2$$

$$= x+1-2$$

$$f(g(x)) = x-1$$

$$\Rightarrow$$

$$f(g(x)) = x-1$$

$$g(f(x)) \rightarrow g(x^2-2) = \sqrt{(x^2-2)+1}$$

= $\sqrt{x^2-1}$

$$g\left(f(x)\right) = \sqrt{\chi^2 - 1} \iff Domain \Rightarrow \frac{1}{\sqrt{2} - 1} \Rightarrow Domain \Rightarrow Domain \Rightarrow \frac{1}{\sqrt{2} - 1} \Rightarrow Domain \Rightarrow Domain$$

Ex 3) In the medical procedure known as angioplasty, doctors insert a catheter into a heart vein and inflate a small spherical balloon on the tip of the catheter. Suppose the balloon is inflated at a constant rate of 44 cubic millimeters per second.

- a) Find the volume after t seconds V= 44 t
- b) When the volume is V, what is the radius? $V = \frac{1}{3}\pi r^3$ (Write an equation that gives the radius r as a function of the volume V)
- c) Write an equation that gives the radius r as a $r = \sqrt{\frac{3.491}{4\pi}}$ function of time t. replace $\sqrt{w_1 + w_2} + \sqrt{w_1 + w_2} = 3\sqrt{\frac{3.491}{4\pi}}$
- d) What is the radius after 5 seconds?

$$\Gamma = \sqrt{\frac{33 \times 5}{\pi}}$$

≈ 3.74 mm